EM reco efficiencies vs jet multiplicity continued...

Samples

- → Data:
 - → EMITRKskim
 - → Single EM triggers
 - → Run range: April 2002 till March 2004
 - → Rejecting bad runs (CAL, SMT, CFT, Jet/Met, Lumi)
 - → No t42 applied
 - Processed with ATHENA (v01-05-02)

- → MC:
 - \rightarrow $Z/y^* > e^+e^-$ indusive
 - → Pythia
 - → 400k events
 - Request IDs: 12018, 12028, 12029, 12030
 - Processed with ATHENA (v01-05-02)

Tag & Probe Method

Tag:

CAL

(tag)TRK

tight electron

Probe:

Z(ee) + n Jets Analysis Cuts:

PVX < 60cm

Tag-Electron: $\exists MF > 0.9$, Iso < 0.15, $\exists MF > 0.9$, $\exists MF > 0.9$,

matched with a good track in $\Delta R(<0.14)$

Trigger: tag electron is required to have fired single electron trigger

Tag & ProbeTracks: 25 GeV < p $_{_{T}}$ < 80 GeV, Chi2 < 8.0, |DCA0| < 0.3, |DCA1| < 4.0, | η | < 1.1, **with** phi cracks

Probe: Good track separated from Tag by $\Delta\Phi$ > 2.0

Opposite sign track requirement to reduce background

TagElec-ProbeTrack-invmass cut: 70 GeV < M_{ag} < 110 GeV

Reco matching cone: dR = SQRT($\Delta \eta^2 + \Delta \Phi^2$) = SQRT($.1^2 + .1^2$) = 0.14

Jets: 0.05 < EMF < 0.95, HotF < 10.0, N90 > 1, CHF < 0.4, L1conf, $\text{p}_{\tau} > 20$., |eta| < 2.0, |not counting jets|

overlapping with probe tracks within $\Delta R < 0.4$

EM reco efficiencies vs jet multiplicity in data and MC

These are the data and MC efficiencies based on the cuts from the previous slide:

2 main issues:

- Gustavo Otero
 (top_analyze) observed
 steep drop in both MC
 and data.
- 2. Why do the data efficiencies drop so steeply in this analysis, whereas MC only drops slightly?

Issue 1: Comparing MC efficiencies with top_analyze

Different ways of removing 'fake' jets can lead to differences in the EM reco efficiencies vs jet multiplicity:

- Track-jet removal (this analysis):
 removes all jets that overlap with tag-/ probe-tracks
- EM-jet removal (top_analyze): removes all jets that overlap with reconstructed EM clusters (passing 'loose' quality cuts: p_⊤ > 15 GeV, |eta_{Det}|<2.5, EMF>0.9, Iso<0.15)

Comparing MC efficiencies with top_analyze

After trying to get the two methods as close as possible (using track-jet removal and similar quality cuts, including a cut on MET) this is how the comparison looks like:

Much better aggreement now.

Residual differences still need to be understood.

Issue 2: Why does data drop so steeply?

Could it be due to background?

Typical event display for inefficient event:

Looking at MET

As an example: looking at the MET distributions in data for # of jets >= 1:

More MET in events w/o reco'd EM cluster: W's?

Next: cutting on MET (15 GeV)

Comparing data and MC with MET cut

MC is flat now

Difference between data and MC gets smaller

Next: add sideband background subtraction

Sideband background subtraction

Trying to further reduce any possible background contamination by estimating background using the diem invariant mass sidebands:

Example for # of jets >= 1 (data)

Tag-electron probe-track diem invariant mass histograms [GeV]

EMreco efficiency **before** applying SB bkg subtraction: (91.2 +- 0.8)%

EMreco efficiency after applying SB bkg subtraction: (92.5 +- 0.8)%

Sideband background subtraction

Residual effect due to phi cracks, background, true jet influence?

Conclusions and Outlook

- Comparisons with top_analyze: most of discrepancy due to a difference in jet-counting/-removal
- Data vs MC: background is the dominant effect
- Clear improvement and better understanding
- Still need to understand residual effects
- Thanks to Gustavo for very productive input

